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Abstract

Background: The prevalence of several human morbid phenotypes is sometimes much higher than intuitively
expected. This can directly arise from the presence of two sexes, male and female, in one species. Men and women
have almost identical genomes but are distinctly dimorphic, with dissimilar disease susceptibilities. Sexually
dimorphic traits mainly result from differential expression of genes present in both sexes. Such genes can be
subject to different, and even opposing, selection constraints in the two sexes. This can impact human evolution by
differential selection on mutations with dissimilar effects on the two sexes.

Results: We comprehensively mapped human sex-differential genetic architecture across 53 tissues. Analyzing
available RNA-sequencing data from 544 adults revealed thousands of genes differentially expressed in the
reproductive tracts and tissues common to both sexes. Sex-differential genes are related to various biological
systems, and suggest new insights into the pathophysiology of diverse human diseases. We also identified a
significant association between sex-specific gene transcription and reduced selection efficiency and accumulation
of deleterious mutations, which might affect the prevalence of different traits and diseases. Interestingly, many of
the sex-specific genes that also undergo reduced selection efficiency are essential for successful reproduction in
men or women. This seeming paradox might partially explain the high incidence of human infertility.

Conclusions: This work provides a comprehensive overview of the sex-differential transcriptome and its importance
to human evolution and human physiology in health and in disease.
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Background
Sexual reproduction is present in nearly all multicellular
eukaryotes [1]. In all cases, males and females have iden-
tical genetic information across most of their genomes,
but harbor many distinct sex-specific characteristics. For
example, mammalian offspring depend on maternal lac-
tation in their early life. Lactation is thus a key factor in
mammalian reproduction, and its associated genetic sys-
tem is expected to be under tight selection. However,
genes involved in lactation are also carried by males,
who do not express this trait [2]. Different selection con-
straints are thus expected on these genes in males and
females. Such cases can lead to reduced purifying

selection on genes that otherwise are expected to be
highly conserved [3]. In the same manner, many genes
that are associated with sexually dimorphic traits might
undergo differential selection, which will likely impact
reproduction, evolution, and even speciation events [4].
Human sexual dimorphism has been demonstrated for
diverse traits, such as brain anatomy and development
[5–7], behavior [8], mortality, longevity and morbidity
[9, 10], and distribution and metabolism of fat biogenesis
[11, 12]. Physical performance capabilities and pain re-
sponse have also been shown to differ between men and
women [13–15]. Previous work found that about 15% of
the expression quantitative trait loci (eQTLs) identified
in B-lymphocytes have a sex-biased impact on gene
expression [16]. That work also reported an overlap of
eQTLs and genome-wide association study single* Correspondence: moran.gershoni@weizmann.ac.il
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nucleotide polymorphisms that are associated with sex-
biased diseases. Moreover, a recent work reported sex-
specific genetic architecture in complex traits [17]. It is
therefore not surprising that men and women differ in
their predisposition to many diseases, in disease courses,
and in drug response [18, 19]. Manifestations of all these
differences are likely associated with the biology of
sexual reproduction.
Sexual dimorphism was suggested to evolve due to dif-

ferential selection on equally expressed traits that be-
come sexually dimorphic and even sex-limited traits
[20]. This can lead to the accumulation of genes with
different effects on males and females. It is thus ex-
pected that the vast majority of sexually dimorphic traits
are due to differential expression of genes that are
present in both sexes [21]. While carried by both males
and females, such genes are expected to undergo sex-
biased selection. This can lead to diverse selection pat-
terns, including sexual antagonism where alleles increas-
ing the fitness in one sex reduce it in the other [21]. In
population genetics terms, the cost of sexual dimor-
phisms might be reflected in the elevated frequency of
an allele with deleterious effects only on one sex. Hence,
a mutation causing congenital disease in only one sex
can propagate to a high population frequency due to re-
duced selective constraints or neutrality in half of the
population (i.e., in the other sex). This might contribute
to sex specificity in the susceptibility to common dis-
eases, and provide a partial explanation to the
phenomenon of “missing heritability” [18]. Indeed, dif-
ferential selection due to sexual dimorphism was sug-
gested and modeled as a mechanism that contributes to
the propagation of deleterious mutations in the popula-
tion [22, 23]. We recently showed first evidence that this
occurs in humans. We found that deleterious muta-
tions in testis-exclusive genes tended to accumulate
more than expected, likely due to reduced selective
constraints in women [24]. However, a more general
demonstration of the association between sex-
differential gene expression and sex-differential selec-
tion is limited to model organisms [25], mainly due
to poor mapping of the sex genetic architecture and
the unavailability of large-scale transcriptome sequen-
cing in humans [24, 26].
Mapping sex-differential selection and gene expression

are fundamental for understanding human evolution and
biology, in health and disease. Recent advances in DNA
sequencing technologies with steadily dropping costs
have made such aims feasible. The release of the
Genotype-Tissue Expression (GTEx) project data, which
currently includes 53 tissue samples from 544 donors
[27, 28], has paved the way for such progress, and pre-
liminary results for sex-differential gene expression are
already available [28].

Here, by rigorous analysis of RNA-sequencing (RNA-
seq) data from the GTEx project [27, 28], we have com-
prehensively mapped, for the first time, human adults
sex-differential gene expression over 45 tissues common
to both sexes. We then identified highly and moderately
sex-specific genes while considering the complete panel
of 53 tissues. Such genes are expected to have general
sex-differential roles, thus suggesting differential selec-
tion. We thus hypothesized that deleterious mutations
in these genes will propagate in the population more
than expected by chance, due to the reduced impact
of purifying selection [22, 24, 29]. By analyzing the
signature of selection in these genes, we have found,
for the first time, reduced selective constraints and
differential rates of accumulation of deleterious muta-
tions in both men and women sex-specific genes. The
expression and function of these genes are associated
with several tissues and biological pathways, including
ones common to both sexes, suggesting a general
phenomenon that directly arises from sex-differential
selection. Moreover, many of these sex-differentially
expressed genes were enriched in sexually dimorphic
systems. Finally, some of these genes suggest new
insights into the pathophysiology of several human
diseases.

Results
We examined human gene expression from RNA-seq
data of the GTEx project version 6 (October 2015 re-
lease), including 8555 samples comprising 53 tissues
from 357 men and 187 women post-mortem donors
aged 20–79 years old [30]. Gene expression data for each
tissue was grouped by sex. This created 98 sets with 45
tissues common to men and women and eight tissues
specific to one of the sexes.

Sex-differentially expressed genes
Sex-differential expression (SDE) was tested in each of
the 45 common tissues by comparing the individual ex-
pression values of 18,670 out of 19,644 informative
protein-coding genes in men versus women. To identify
SDE we used the NOISeqBIO method [31, 32] to com-
pare gene expression in the common tissues between
men and women. The results were further analyzed to
produce a relative SDE score for each gene in each com-
mon tissue using a metric we devised (Additional file 1:
Figure S1).
On the background of similar expression in most

tissues of most genes (Additional file 2: Figure S2;
Additional file 3: Table S1), there are over 6500 protein-
coding genes with significant SDE in at least one tissue.
Most of these genes have SDE in just one tissue, but
about 650 have SDE in two or more tissues, 31 have
SDE in more than five tissues, and 22 have SDE in nine
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or more tissues (Additional file 4: Figure S3 and
Additional file 5: Table S2). As expected, Y-linked genes
that are normally carried only by men show SDE in
many tissues. Nevertheless, 16 out of the 244 X-linked
SDE genes also have widespread SDE (across six or more
tissues, Additional file 5: Table S2) in either men or
women. We found that three of these X-linked genes are
located at pseudo-autosomal region 1 (PAR1), which
undergoes relatively frequent recombination between
the X and Y chromosomes and is known to escape X-
inactivation [33] (Additional file 5: Table S2; Additional
file 6: Figure S4). It is noteworthy that these PAR1 genes
have men-biased expression.
The most sex-differentiated tissue, with 6123 SDE

protein-coding genes, is the breast mammary glands
(Fig. 1; Additional file 2: Figure S2), as previously
noted [28]. This suggests major differences in the
physiology and sex genetic architecture of this tissue.
We found 1145 genes to be SDE in non-mammary
gland tissues. The most differentiated of these

tissues, with over 100 SDE genes, are the skeletal
muscle, two skin tissues, subcutaneous adipose, an-
terior cingulate cortex, and heart left ventricle
(Figs. 1 and 2). Most GTEx tissues (46 out of 53)
have more than seventy samples (70–361). This
sample-size variation can affect the number of iden-
tified SDE genes per tissue. The Pearson correlation
coefficient between the sample size and the number
of identified SDE genes is 0.10 for the 45 analyzed
tissues common to men and women, and 0.57 when
the mammary glands tissue is excluded. This sug-
gests that sample size contributes to the differences
in the number of identified SDE genes per tissue, al-
though several tissues noticeably deviate from this
trend (e.g., the breast and whole blood tissues,
Fig. 1). Besides the number of SDE genes, the tissues
can also be clustered by the patterns of gene SDE
scores. This analysis found the two skin, adipose-
subcutaneous, and stomach tissues to deviate the most
from all other tissues, and that seven of the thirteen

Fig. 1 Box plot of (a) sex-differential expression (SDE) scores of all protein-coding genes, and (b) the number of SDE genes in 45 tissues common
to men and women. Most genes are not differentially expressed, and have an SDE score of zero. Positive and negative values denote women-
and men-biased expression, respectively, colored according to their organs or their biological-system affiliation
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brain tissues clustered together (Fig. 2, Additional file 7:
Figure S5) [34].
Clustering genes by their SDE patterns across tissues

revealed 10 groups (Fig. 2, Additional file 8: Figure S6),
nine of which can be described as follows:

1. Three groups of men-biased expression in the skin,
skeletal muscle, or cingulate cortex tissues (e.g.,
MYH1; Fig. 3).

2. Five groups of women-biased expression in the liver,
heart left ventricle, skin, skeletal muscle, or adipose
subcutaneous tissues (e.g., NPPB; Fig. 3).

3. A group of mostly X-linked genes with SDE in vari-
ous tissues, mainly with women-biased expression
(e.g., ZFX; Fig. 3).

Other genes, such as TSHB, show tissue-specific ex-
pression bias (Additional file 9: Figure S7), and a few
genes present an alternating pattern of expression biases,
such as MUCL1 that is overexpressed in men skin tissue

and in women mammary glands (Additional file 9: Fig-
ure S7). To detect differential expression in genes with
complex modes of expression we used an additional ana-
lysis approach, which is more sensitive to such cases.
This analysis uncovered 241 additional genes in non-
mammary gland tissues that were clearly not detected in
the first approach (see “Methods” and Additional file 10:
Table S3, supplementary results). For instance, we found
a likely age-related gene overexpression in women brain
tissue (Additional files 11 and 12: Figures S8 and S9).
Genes found to have SDE were analyzed for gene en-

richment in different types of terms (e.g., diseases, Gene
Ontology (GO) terms, pathways [35]). Genes with
women-biased expression were associated with obesity,
muscular diseases, and cardiomyopathy. In addition,
overexpressed women-biased genes were enriched in
glucose metabolism and adipogenesis pathways (Add-
itional file 13: Table S4). Interestingly, 15 out of 20 genes
found to be associated with cardiomyopathy also showed
a women overexpression bias in heart tissue, as in the

Fig. 2 Heatmap of sex-differential expression (SDE) scores of all genes with at least one SDE in non-mammary gland tissue. Red denotes women
specificity and blue denotes men specificity. The genes are grouped according to principal component analysis clusters (Additional file 8: Figure S6).
Tissues are grouped using hierarchical clustering
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natriuretic peptide B-secreted cardiac hormone gene
NPPB (Fig. 3), supporting previous evidence on its
involvement in sex-differential cardiovascular pheno-
types [36, 37]. Genes with men-biased expression
also showed enrichment in glucose metabolism path-
ways, but the gene sets differed, suggesting alterna-
tive pathways in glucose metabolism between men
and women (Additional file 14: Table S5). A muscle-
contraction pathway was also associated with genes
overexpressed in men (Additional file 14: Table S5).
This might be related to the physiological differences
in muscle tissues and in physical features between
men and women [38, 39].

Identification of sex-specific genes
Beyond genes that have SDE in one or several tis-
sues are more extreme cases of genes with overall
exclusive or high expression-specificity in one sex
[40]. Such sex-specific genes are more likely to have
global sex-differential functional roles, and are thus

expected to present measurable sex-differential selec-
tion that can be reflected by a reduction in purifying
selection [24]. A gene was considered sex specific if its
maximal expression value in one sex was significantly
higher from its expression values in all tissues of the
other sex. In addition, genes were considered as non-SDE
if their maximal expression values in men and women
differed by no more than 10% (≤1.1 fold). We identified
1559 sex-specific and moderately sex-specific genes. Of
these genes, 1288 (82.6%) were men-specific and overex-
pressed in the testis (Additional file 15: Table S6;
Additional file 16: Figure S10). Aside from these 1559
genes, we found 26 women-specific and 114 moderately
women-specific genes, and 82 non-testis men-specific
and 49 moderately men-specific genes (Fig. 4; Additional
file 17: Table S7). Over 8000 genes were identified as
non-SDE (see “Methods” and Additional file 3: Table S1).
The sex-specific and moderately sex-specific genes could

be grouped by their expression patterns into six major cat-
egories (Fig. 4; Additional file 16: Figure S10):

Fig. 3 Examples of various patterns of differential expression. Expression of genes TCHH, CPZ, PAGE4, MYH1, NPPB, and ZFX in 53 human tissues.
Reads per kilobase of transcript per million values of these genes were retrieved from the GTEx project data [27, 28]. Red bars denote women
samples and blue bars denote men samples; pink bars denote women reproductive tissues and light blue bars denote men reproductive tissues
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1) Testis overexpressed genes in men (Additional file
16: Figure S10)

2) Prostate overexpressed genes in men (e.g., PAGE4, Fig. 3)
3) Reproductive system overexpressed genes in women

(e.g., CPZ, Fig. 3)
4) Skin-specific overexpressed genes in men (e.g.,

TCHH, Fig. 3)
5) Brain tissue overexpressed genes in women
6) Mainly gland and brain tissue overexpressed genes, in

men or women (e.g., TSHB, Additional file 17: Table S7).

Overall, sex-specific genes are mainly expressed in the
reproductive system, emphasizing the notable physio-
logical distinction between men and women. However,
scores of genes that are not known to directly associate
with reproduction were also found to have sex-specific
expression (e.g., the men-specific skin genes).

Selection analysis
We calculated the numbers of observed (1000 Genomes
Project [41]) and possible deleterious non-synonymous

(DNS), stop-gain, and synonymous (S) single-nucleotide
variants (SNVs) for each gene. This allowed us to quan-
tify the selection pressure and its direction by dDNS/dS
and dStop/dS ratios. Similar to dN/dS, these ratios are
selection indicators [42, 43]. Ratios close to 1 indicate
neutral selection, lower ratios indicate purifying (nega-
tive) selection, and significantly higher ratios suggest
adaptive (positive) selection (see “Methods”).
Natural gene variants have different frequencies, with

most of the variation due to alleles with rare to low
minor allele frequencies (MAFs) [24, 44]. However, se-
lection is expected to have only a slight effect on the
propagation of very rare variations because they are pre-
dominantly new while selection is mainly a long-term
process [44, 45]. In addition, most phenotypes result
from allele and gene interplay, and are thus highly un-
likely (except in inbreeding) for rare variations, as in re-
cessive and epistatic models of inheritance [45]. We
hence studied the population genetics of the dDNS/dS
and dStop/dS to find the proper MAF threshold in
which the selection efficiency is maximal. Higher dDNS/

Fig. 4 Heatmap of sex-differential expression (SDE) scores of the sex-specific and moderately sex-specific genes, colored as in Fig. 2. Red, blue, and
purple boxes denote major women, men, and combined gene clusters, respectively
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dS ratios are more abundant for SNVs with rare MAFs
(<0.005, Fig. 5), indicating that negative selection pre-
dominantly affects the propagation of deleterious SNVs
for MAFs >0.005, as previously shown [24, 44]. However,
dStop/dS ratios are sharply decreased for very rare SNVs
(i.e., MAFs <0.001, Fig. 5). We thus further analyzed the
effect of selection on DNS and stop-gain using MAF
thresholds of >0.005 and >0.001, respectively.

Selection analyses of sex-specific and moderately sex-
specific genes
We have previously shown that human testis-exclusive
genes are under reduced selection [24]. All 1100 of 1295
men testis-overexpressed genes identified here that are
covered in the 1000 Genomes Project were also found to
have significantly higher dDNS/dS and dStop/dS ratios
(Table 1). This gene set includes 77 out of 95 of the
genes we previously identified as testis exclusive [24].
The other 18 out of 95 genes that we previously found
to be specifically expressed in testis tissues might not be

identified here because these tissues are not present in
the GTEx samples. The non-testis men-specific and
moderately women-specific genes also had significantly
higher dDNS/dS ratios (Table 1, Fig. 6). The significantly
higher dDNS/dS ratio of these men-specific genes did
not depend on the presence of the 55 keratin genes
(Table 1). women-specific genes too had a significantly
higher dDNS/dS ratio (Table 1, Fig. 6). Moderately
women-specific genes had a higher, yet not significant,
dDNS/dS ratio (Table 1). However, when comparing the
moderately women-specific genes to non sex-specific
genes, we found the dDNS ratios to be significantly
higher for the moderately women-specific genes (1.66
fold change, Fisher’s exact test p-value <1 × 10−4) but the
dS ratios showed no significant change (1.08 fold
change, Fisher’s exact test p-value = 1.5 × 10−1). Thus,
moderately women-specific genes have significantly re-
duced selection relative to non sex-specific genes. The
same analysis for dStop/dS of men- and women-specific
genes also found significantly reduced selection (Table 1).

Fig. 5 Population genetics of selection pressures. Population distribution frequencies (y-axis) of protein-coding gene (a) dStop/dS and (b) dDNS/
dS values in the 1000 Genome Project, Phase 3, for different minor allele frequency (MAF) ranges (x-axis). Different dStop/dS and dDNS/dS ratio
ranges are denoted by different colors (see key). dDNS deleterious non-synonymous, dS deleterious synonymous, dSTOP deleterious stop-gain
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A significant reduction in purifying selection on sex-
specific genes was hence found by independent analyses
of selection on DNS and stop-gain mutations on diverse
sets of sex-specific genes from both women and men, in-
cluding sets from non-reproduction-related tissues. It is
also notable that although reduced selection was ob-
served for both men- and women-specific genes, it was
higher in men-specific genes compared to women-
specific genes (Fig. 6, Table 1).

Discussion
Mapping sex-differential gene expression we found more
than 6500 protein-coding genes with significant SDE in
one tissue or more. The most differentiated tissue was
the breast mammary gland, with more than 6000 genes
having significant SDE (Fig. 1). This remarkable sex-
biased gene expression is likely due to the distinct
physiologic properties of this tissue between men and
women [2]. In evolutionary terms, differential selection
between the sexes of so many genes that are likely

involved in lactation, an essential reproductive trait,
might inhibit optimal adaptation of this trait due to its
distinct importance in men and women.
Almost all SDE genes are sex differentiated in one or

just a few tissues. Thirty-one genes have SDE in six or
more tissues. Besides Y-linked genes that have men-
specific expression, 16 of the other genes are X-linked,
with multiple-tissue SDE in either men or women. Three
of these X-linked genes are located in the PAR1 region
(Additional file 6: Figure S4; Additional file 5: Table S2),
which includes genes that undergo recombination with
the Y chromosome and also escape X-inactivation [33].
These PAR1 genes have identical sequences in their X
and Y copies (Additional file 5: Table S2), but are only
classified as X-linked in the GTEx data. While this
should have led to similar expression in men and women
(as in most autosomal genes), these genes have men-
biased expression in multiple tissues. It is possible that
although the copies are identical, the regulation of their
expression is distinct between the X and Y-

Table 1 Selection analysis summary

Gene group n dDNS/dS (MAF > 0.005) p-value dStop/dS
(MAF > 0.001)

p-value

Women-specific 26 0.23 0.02 0.27 0.0117

Men-specific 82 0.30 0.0005 0.29 0.0001

Men-specific; no keratin and keratin-associated genes 27 0.28 0.009 0.22 0.026

Moderately women-specific 114 0.16 0.09 0.13 0.0076

Moderately men-specific 49 0.25 0.005 0.07 0.27

Men testis overexpressed 1100 0.238 <0.0001 0.29 <0.0001

dDNS deleterious non-synonymous, dS deleterious synonymous, dSTOP deleterious stop-gain, MAF minor allele frequency

Fig. 6 Sex-specific expression and purifying selection. a dDNS/dS ratios of different groups of genes (Table 1, black bars) and the mean (white
circles) and standard deviations (lines) of 10,000 random control sets with the corresponding number of genes. b Inverse correlation between sex
specificity and selection efficiency. dDNS deleterious non-synonymous, dS deleterious synonymous
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chromosomes. Besides the PAR1 genes, X-linked SDE
genes in multiple tissues were found to only have
women-biased expression (Additional file 6: Figure S4).
In several cases we found that such genes have an active
paralog on the Y chromosome and it is therefore likely
that these genes escape X-inactivation and both X alleles
are expressed in women, while men have only one X-
linked allele.
Aside from the mammary glands, the adipose, skeletal

muscle, skin, and heart tissues have over a one hundred
SDE genes. This indicates substantial differences in the
physiology, or alternate biological pathways, in these tis-
sues between adult men and women. However, the dif-
ferences in the number of SDE genes per tissue should
be carefully assessed because the variability in tissue
sample sizes could contribute to the number of SDE
genes per tissue that we can identify. Functional terms
analysis of SDE genes suggests sexual dimorphism in fat
biogenesis, muscle contraction, and cardiomyopathy
(Additional files 13 and 14: Tables S4 and S5). Tissues
with few identified SDE genes might have overall similar
function between men and women, yet even very few
SDE genes can have extensive physiological impacts on
the organism. For instance, the pituitary gland has only
26 identified SDE genes (Figs. 1 and 2), but two of them
are the FSHB (women-biased) and TSHB (men-biased)
gonadotropin hormones that have wide-ranging roles in
human reproduction and metabolism [46, 47]. Another
example is the CYP3A4 and CYP2B6 cytochrome P450
enzymes, which have women-biased expression in liver.
Cytochrome P450 (P450, CYP) enzymes are associated
with drug metabolism and other essential catabolic pro-
cesses [48], and might be involved in sex-differential
drug responses, as previously reported [49]. Other iden-
tified specific genes might shed new light on the patho-
physiology of human diseases. For instance, the NPPB
gene, which is mainly overexpressed in young women’s
hearts (Additional file 18: Figure S13), is related to car-
diovascular homeostasis [36, 37]. Variations in this gene
are associated with postmenopausal osteoporosis, a
health condition mainly affecting women [50]. Thus, a
sexually dimorphic effect of this gene on both pheno-
types would be interesting to assess.
To evaluate the association between SDE and selection

we identified sex-specific genes. Such genes are likely to
possess different roles between the sexes and therefore
are likely to undergo different selection pressures in each
sex. The vast majority of sex-specific genes we found are
overexpressed in the testis. We previously showed re-
duced selection and accumulation of damaging mutation
in such genes. Here we confirmed our previous findings,
extended them to many more testis-overexpressed
genes, and to sex-specific genes of other men and
women tissues. Many of the non-testis sex-specific genes

are also related to the reproductive system, including
genes expressed in tissues common to both sexes, such
as gonadotropin hormones expressed in the pituitary
(e.g., FSHB and CGB7). Dozens of genes with no direct
association to reproduction were also identified as sex
specific. Many of these genes are expressed in skin tis-
sues, are linked to hairiness (Additional files 13 and 14:
Tables S4 and S5), and are likely involved in hair di-
morphism in women and men. Other non-reproductive
genes do not seem to share common features with each
other, but are each interesting on their own, for example,
the moderately men-specific growth hormone GHRH
and the men-specific calcitonin-related polypeptide
alpha (CALCA) (Additional file 17: Table S7). The latter
is involved in calcium regulation and functions as a
vasodilator [51, 52]. The genes fro both seem specific to
adult men, although they are related to apparently gen-
eral biological processes.
Analyzing selection on highly and moderately men-

and women-specific genes, we found a significant associ-
ation with reduced selection efficiency, as reflected in
their dDNS/dS and dStop/dS ratios (Table 1, Fig. 6). The
reduced purifying selection efficiency was also correlated
with the level of sex specificity. This suggests that higher
sex specificity indicates greater distinction in the func-
tional importance for each sex, and reduced selection ef-
ficiency. This in turn enables the propagation of
damaging alleles through the non-expressing sex line-
ages. The resulting relatively high population frequencies
of these alleles can enhance the prevalence of different
human diseases.
Although we found reduced selection on both men-

and women-specific genes, it is notable that reduced se-
lection was more prevalent in men-specific genes (Fig. 6).
This supports our previous expectations to find men-
specific genes to be under less selection than women-
specific genes [24]. We suggest that the basis for this
could be the practically unlimited numbers of available
male gametes compared to the restricted number of
available women gametes, as suggested in the Bateman
principle [53]. Thus, the ability of women to pass on al-
leles that cause men-specific lethality will less affect the
number of fertile men required to sustain the popula-
tion, but not vice versa.
In this work we focused on protein-coding genes, be-

cause currently there is a broad functional knowledge on
these genes and extensive experience in analyzing and
quantifying the selection trends these genes have under-
gone. However, the importance of non-coding RNA
genes for the regulation and execution of sexual di-
morphism was not ignored. For instance, the function of
the XIST long non-coding RNA gene in the sex-specific
X-inactivation process is well documented (Additional
file 19: Figure S11) [54]. Our preliminary observations of
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the RNA gene differential transcriptome support a global
role of these genes in the sex genetic architecture
(Additional file 20: Figure S12). Hence, this work and
the data it provides might trigger further in-depth
studies on the contribution of RNA genes to sexual
dimorphism.
Finally, the vast majority of sex-specific genes we

found are associated with the reproductive system. Dam-
aging mutations in many reproductive genes can hence
propagate to high population frequencies. We suggest
that sex-specific genes are major contributors to the
high incidence of infertility in men and women.
Our results are delimited by the scope of the data in

the GTEx study. This study includes 53 tissues from
adult humans. All tissues are composed of several cell
types and a few are represented in fewer than 15 men or
women donors. We believe our statistical and analysis
measures excluded most false-positive results. However,
the distinct age limits of the samples are acutely pertin-
ent to sexual dimorphism and we do not know how
much of our findings can be extended beyond adults.
Examining comparable data from puberty and during
embryonic stages of sex determination will likely aug-
ment the genes and phenomena described here.
After submitting this work for review, two studies on

sexual dimorphism in human gene expression were
made public. Kassam et al. examined the sex-specific
genetic architecture of autosomal gene expression in
whole blood samples from about one thousand men and
one thousand women using DNA arrays [55]. No differ-
ences between men and women were found in auto-
somal genetic control of gene expression. We too did
not identify autosomal genes with different expression
between men and women in the GTEx whole blood tis-
sue (Fig. 1; Additional file 3: Table S1). Chen et al.
posted to bioRxiv a non-peer-reviewed preprint analyz-
ing the GTEx data for gene expression sexual dimorph-
ism and regulatory networks [56]. They report sexually
dimorphic patterns of gene expression involving as many
as 60% of autosomal genes. Similar to our findings, they
reported breast, skin, adipose, heart, and skeletal muscle
as the most sexually dimorphic tissues. The studies vary
in their analyses procedures and emphasize different
contexts of SDE. These studies are complementary
works with different insights.
The mode of gene expression is very complex, depend-

ing on the gene’s genomic and chromatin contexts, activ-
ity of other genes, expressing tissue, the individual’s
developmental stage, and external factors such as expos-
ure to pathogens, diet, and temperature. The expression
level of genes thus varies temporally (in scales of minutes
to decades) and across tissues, and is a multidimensional
system. This is the key challenge in evaluating differential
gene expression between populations.

SDE between men and women stems from any devia-
tions of gene activity in place (i.e., organs, tissues, and
cells) and time (e.g., developmental stage, age, cell cycle
point, or periodic processes). The overall distribution of
gene expression values in two populations could be
highly similar, and distinct in only a minor subset of
samples that represents a genuine biological difference
in time and/or place. For instance, a gene can have simi-
lar basal expression in men and women, but upon sex-
specific induction its expression will be altered only in
one sex. Thus, only a small fraction of one population in
any one time might differentially express this gene. Iden-
tifying differential expression is thus a challenging prob-
lem. In addition, sex-specific expression is a particular
case of SDE, in which genes present a global bias in their
mode of expression in one sex compared to the other.
We applied several approaches to identify SDE and

sex-specific expression. Besides analyzing differences ac-
cording to the population variance (NOISeqBIO), we
also used an approach that gave weight to a subset of
samples that notably deviated from all other samples
(using count trimmed means and NOISeq-sim). The
DESeq2 method was also used to validate the results in
selected datasets. In addition we used a new normalized
measure for gene differential expression between pairs
of sample populations. This differential expression meas-
ure takes into account the expression difference between
the sexes and the maximal expression of the gene in all
tissues, placing the difference in specific tissues in the
context of the gene overall mode of expression. This
measure is general and can be used in other
population-based differential gene expression studies
(Additional file 1: Figure S1). Combining these ap-
proaches increased our ability to identify differential
expression from various modes of gene expression.
Accumulation of many more samples from different
donors and conditions will uncover the full spectra of
gene modes of expression and improve the resolution
of differential expression analyses.

Conclusions
This work comprehensively mapped for the first time
the sex-specific genetic architecture of human adults.
We identified hundreds of genes with women and men
SDE, and showed the relation of these genes to several
sexually dimorphic features, to human diseases, and to
human evolution. Our results can facilitate the under-
standing of diverse biological characteristics in the
context of sex. We also demonstrated the increased
propagation of deleterious mutations in many men-
and women-specific genes and thus the likely contri-
bution of SDE genes to the occurrence of common
human diseases.
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Methods
Data sources
RNA-seq data were retrieved from the GTEx project
version 6 [27, 28]. Population variation data were re-
trieved from the 1000 Genomes Project, Phase 3 (n =
2504 individuals, [41]). The human GRCh37 release cod-
ing exome coordinates and sequences were retrieved
from Ensembl [57].

Variation analysis
The AnnoVar software package [58] was used to anno-
tate the reported variations from the 1000 Genomes
Project, and all possible variations (relative to the
GRCh37; h19 reference genome) in every human
protein-coding position documented in GRCh37. For
each variation we determined its specific protein-
transcript consequences, its population frequency, and
its predicted functional likelihood (using both SIFT and
PolyPhen algorithms [59, 60]). A non-synonymous (NS)
variation was considered functional only when both
SIFT and PolyPhen algorithms predicted it as deleterious
[24]. Because SIFT mainly uses sequence conservation
and PolyPhen mainly uses structural and functional im-
pacts, we found the combination of the two methods to
be highly accurate (number of true positive from total
positive prediction [24]). This analysis calculated the dis-
tribution of all mutation types for each gene as observed
in the 1000 Genomes Project population, and the com-
puted distribution of all possible nucleotide substitutions
consequences (i.e., NS, DNS, S, and stop-gain) for each
protein-coding gene. The obtained data allowed us to
calculate the deleterious (dDNS), loss-of-function
(dStop-gain), and neutral (dS) mutation rates for each
gene or group of genes according to the 1000 Genomes
Project data. We examined the use of other available
sources of human genetic variations, such as ExAC [61].
However, the number of additional SNVs with popula-
tion frequencies >0.005, which are predominantly af-
fected by selection, from these sources was negligible
relative to the 1000 Genomes Project data (not shown).

Selection analysis
Previously, others and we have shown that the effect of
selection on a mutation largely depends on its popula-
tion frequency. Selection predominantly affects muta-
tions that are have a population frequency >0.005, while
very rare mutations (population frequency <0.001) tend
to undergo negligible selection [24, 44]. Selection was
thus analyzed according to the MAF range of the varia-
tions [24]. Selection pressures were assessed by calculat-
ing for each gene, or group of genes, the ratios of its
functional (DNS and stop-gain) mutation rates to its
neutral (S) mutation rate. The rate of a mutation type is
the number of observed mutations from a certain type

(e.g., S) in the 1000 Genomes Project, Phase 3, divided
by all computed possible nucleotide substitutions leading
to that type of mutation in the gene. The selection signa-
ture is the ratio of the functional rates (dDNS or dStop-
gain) divided by the neutral rate (dS), that is, dDNS/dS
and dStop-gain/dS. These measures extend the dN/dS
type measures, similar to a previous work [43]. As in
dN/dS, higher ratios indicate lower purifying selection
[42]. To calculate if the dDNS/dS and dStop/dS ratios in
a group of sex-specific genes deviated from these ratios
in other protein-coding genes, we performed a
randomization test: all non-Y-linked, non-testis-specific
unique protein-coding human genes for which we have
variation data in the 1000 Genomes Project and expres-
sion data in the GTEx project were used to create
10,000 random sets for each gene group. The number of
genes in each set was the number of genes in the exam-
ined gene group. To compare the dDNS and the dS ra-
tios between the two independent groups of moderately
women-specific genes and non-sex-specific genes, we
performed a Fisher’s exact test.

Differential expression
Genes with SDE were detected by two approaches from
the NOISeq R package [31, 32] The first approach used
the NOISeqBIO algorithm, which treats the sample
population as biological replicates in which the com-
puted variability within the population is considered as
noise [31, 32]. We used this to compare gene reads per
kilobase of transcript per million mapped reads (RPKM)
expression values between women and men population
samples from corresponding tissues after excluding un-
informative genes, that is, genes that did not have at
least an expression of 1 RPKM in any sample. A prob-
ability cutoff of 0.95 was used to identify genes with sig-
nificant differential expression, as this cutoff value is
considered correct for multiple testing [31, 62]. The
NOISeqBIO method provides effective statistics for de-
termining differential expression between two popula-
tions. However, this approach regards the population
variability as noise and could exclude some genuinely
sex-differentiated genes that have complex modes of ex-
pression. For instance, genes activated during ovulation
are expected to be expressed only in a few women
(mainly in women <50 years old and on a few days each
month [63]), while not being expressed in most women
and in all men samples. The differential expression of
such genes will be difficult to identify using a straightfor-
ward population analysis. To detect at least some of
these cases, we used an additional analysis approach that
could identify the difference in such cases.
To overcome this issue, at least partially, a single

trimmed mean of all RPKM or read count expression
values was calculated for every gene from each tissue
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sample and sex (men or women) by removing the two
most extreme sample values. This removed samples that
could have skewed the mean. Assuming the trimmed
means of read counts reflect the population expression
of a gene in men or women samples, we then computed
their differential expression using the NOISeq-sim algo-
rithm [32]. NOISeq-sim relies on the assumption that
read counts follow a multinomial distribution, in which
the probability for each feature in the multinomial distri-
bution is the probability of a read to map to that feature.
This identified an additional list of genes with differen-
tial expression that were not identified by NOISeqBIO
but had NOIseq-sim probability scores of at least 0.8
and a NOISeqBIO probability score at least 0.2 smaller.
Finally, to assess the reproducibility of SDE analysis by

NOISeqBIO we implemented and used another differen-
tial expression method, DESeq2 [64], and analyzed the
adipose-subcutaneous and liver datasets. We found that
after p-value adjustment for multiple-testing correction,
>92% of the adipose-subcutaneous and liver genes iden-
tified as SDE in NOISeqBIO were also found to be SDE
by DESeq2.
The possible impact of the sample size on the number

of identified SDE genes per tissue was tested by the
Pearson correlation co-efficient (r). To assess a possible
bias in the age distribution between men and women
samples we used the two-sample Kolmogorov–Smirnov
test. We found no significant differences in age distribu-
tion between men and women.

Gene and tissue clustering
Patterns of differential expression were analyzed using
the following gene differential expression score, calcu-
lated for tissues with data for both men and women:

SDE ¼ LOG2 1þ EXPRg;t
w=MAXg

� �
= 1þ EXPRg;t

m=MAXg

� �� �

Where g is a specific gene, t is a specific tissue, and m
and w represent men and women, respectively. EXPRg,t

w

is the NOIseqBIO-calculated mean RPKM expression
value of gene g in tissue t for women (or for men with
the m superscript), and MAXg is the maximal NOIse-
qBIO calculated mean RPKM expression value of gene g
in all tissues (including tissues specific for men or
women). This score returns the differential expression
value of a gene in a specific tissue, relative to the
maximal expression of the gene. The value ranges
from 1 (exclusive expression in women) to -1 (exclu-
sive expression in men). This formula gives lower
scores when expression in the examined gene and tis-
sue are lower than those of the gene in some other
tissue and can be generalized to compare the differ-
ence between two populations normalizing by a max-
imal value (Additional file 1: Figure S1).

Hierarchical cluster analyses and principle component
analysis (PCA) were performed on a matrix of sex-
differential expression (SDE) scores, with values of 0
given to genes that were not found significant in the
NOISeq statistical analyses described above. Heatmap
and hierarchical cluster analyses used the hclust method
of the heatmap.2 R package and the pvclust method
[34]. The PCA and the partitioning around medoids
analyses used the CLARA and PAM methods of the R
cluster package [65], with Euclidean distance measure-
ments. This analysis allowed us to group genes accord-
ing to their SDE patterns similarity.

Sex-specific expression
To find genes that are specific or highly specific to one
sex, for each non Y-chromosome gene we calculated the
ratio of its maximal trimmed mean expression values in
one sex to its maximal trimmed mean expression in the
other sex. Genes were considered as specific or highly
sex-specific for ratios of at least 4-fold, when the lower
maximal expression value was at least 1 RPKM. A ratio
cutoff of 2-fold was used when the higher maximal ex-
pression was at least 1 RPKM but the other lower max-
imal expression value was very low (<1 RPKM). Other
genes with sex ratios of 2–4-fold were considered as
having moderately sex-specific expression, and genes
with ratios of 1.1–0.9-fold were considered as having
sex-similar expression. The statistical significance of the
highly sex-specific gene expression was tested using the
NOISeqBIO method, comparing samples from the tissue
with the highest expression in one sex to samples from
the tissue with the highest expression in the other sex.

Gene enrichment analysis
Gene enrichment analysis was performed using the Gen-
eAnalytics server, which can identify gene enrichment
for several terms and data sources, including diseases,
pathways, GO terms, and tissue expression [35].

Additional files

Additional file 1: Figure S1. Differential expression score. Landscape of
scores for all possible ratios of men and women expression values using a
base 2 logarithm. The formula we derived for SDE score can be generalized
to compare the difference between two populations (x and y) in a certain
tissue or condition (t), normalizing by a gene (g) maximal expression value
(MAXg). This differential expression score (DES) is a logarithm of the
normalized ratios, giving scores between −1 and 1. We use a logarithm
base of 2, but other bases (n) are possible. The general expression is thus
DES = LOGn{(1 + (EXPRg,t

x/MAXg) * (n − 1))/(1 + (EXPRg,t
y/MAXg) * (n − 1))}

where EXPRg,t
x is the expression value of gene g in tissue/condition t for

population x. This score returns the differential expression value of a gene
in specific tissue/condition, relative to the maximal expression of the gene.
The value ranges from 1 (exclusive expression in x) to −1 (exclusive
expression in y). Larger logarithm bases (n) exponentially increase the
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transitions between exclusive expression (1 and −1) and non-differential (0)
scores. (PDF 276 kb)

Additional file 2: Figure S2. SDE score heatmap of all protein-coding
genes in 45 tissues common to both sexes. Scores are color-coded from
blue (strictly men) to red (strictly women), with non-differential expression
in white. Most genes are similarly expressed in most tissues with the exception
of the breast mammary gland (more than 6000 SDE genes). (PDF 187 kb)

Additional file 3: Table S1. SDE scores for all protein-coding genes in 45
tissues common to men and women. Genes were analyzed by NOISeqBIO
with scores of zero given for genes with insignificant differential expression.
Other genes have SDE scores below zero for men-biased expression and
above zero for women-biased expression. (CSV 2205 kb)

Additional file 4: Figure S3. Occurrence of genes according to
number and exact (a) or cumulative (b) number of tissues they have SDE
in. Most SDE genes are differentially expressed in one or few tissues. SDE
genes in multiple tissues are mostly linked to the sex chromosomes
(Additional file 5: Table S2). (PDF 177 kb)

Additional file 5: Table S2. Genes with SDE in more than five tissues.
(DOCX 17 kb)

Additional file 6: Figure S4. SDE score heatmap of 244 protein-coding
X-linked genes, ordered by their chromosomal position. Three genes
have men-biased expression in multiple tissues, are in the PAR1, and
none in PAR2 regions (green boxes). Scores are color-coded from blue
(strictly men) to red (strictly women), with non-differential expression in
white. (PDF 152 kb)

Additional file 7: Figure S5. Hierarchical clustering of 44 tissues
common to men and women (excluding mammary glands) by their
gene SDE patterns. Percent p-values are Bootstrap-Probability in green,
and Approximately-Unbiased in red [34]. The mammary gland tissue was
excluded from the analysis because it had an order of magnitude more
SDE genes than the other 44 common tissues. (PDF 45 kb)

Additional file 8 Figure S6. The first two components of principle
component analysis of all protein-coding genes with SDE in at least one
non-mammary gland tissue. Cluster colors denote groups of genes with
the similar SDE patterns. See also Fig. 2. (PDF 191 kb)

Additional file 9: Figure S7. Expression of TSHB and MUCL1 genes in
53 human tissues. Box-plots of women samples are in red and men sam-
ples in blue. The pituitary-specific gene TSHB is significantly overex-
pressed in men. MUCL1 is significantly overexpressed in men skin and in
women mammary glands. (PDF 199 kb)

Additional file 10 Table S3. Integrated SDE NOISeqBIO and NOISeq-sim
based analyses (see “Methods”) for all protein-coding genes in 44 tissues
common to men and women (excluding mammary glands). Values below
or above zero denote men- or women-biased expression, respectively, and
zero denotes genes with insignificant SDE. (CSV 2111 kb)

Additional file 11 Figure S8. Non-Y-linked genes partitioning around
medoids clustering by the gene SDE patterns in 44 tissues common to men
and women (excluding mammary glands). To identify SDE in genes with
complex modes of expression we applied the NOISeq-sim approach that
weighs groups of outliers (see “Methods”). The mammary gland tissue was
excluded from the analysis because it had an order of magnitude more SDE
genes than the other common tissues. (PDF 138 kb)

Additional file 12: Figure S9. Sex-biased expression of the MTRNR2L2
gene. MTRNR2L2 is notably expressed in women substantia-nigra (a, red
box) due to overexpression in women older than 60 years. b Women
under and above 60 years, n = 12 and n = 12 respectively. Men under and
above 60 years, n = 16 and n = 23, respectively. (PDF 297 kb)

Additional file 13: Table S4. Women-biased protein-coding gene terms
enrichment analyses. Multiple Excel worksheets summarizing GeneAnalytics
[35] gene enrichments including diseases, GO terms, and pathways.
(XLSX 625 kb)

Additional file 14: Table S5. Men-biased protein-coding gene terms en-
richment analyses. Multiple Excel worksheets summarizing GeneAnalytics [35]
gene enrichments including diseases, GO-terms, and pathways. (XLSX 557 kb)

Additional file 15: Table S6. SDE scores for testis overexpressed
protein-coding genes across 53 tissues. Values below or above zero

denote male or women-biased expression, respectively, and zero denotes
genes with insignificant SDE. (CSV 791 kb)

Additional file 16: Figure S10. SDE score heatmap of testis-specific
and moderately specific genes. Red and blue denote women or men
specificity, respectively. (PDF 200 kb)

Additional file 17: Table S7. SDE scores for non-testis sex-specific and
moderately sex-specific protein-coding genes across 53 tissues. Values
below or above zero denote men- or women-biased expression, respect-
ively. (CSV 177 kb)

Additional file 18: Figure S13. Age-related expression of the NPPB
gene in heart left ventricle show overexpression in young women.
Women under and above 60, n = 54 and n = 22, respectively. Men under
and above 60, n = 103 and n = 39, respectively. (PDF 92 kb)

Additional file 19: Figure S11. Expression of XIST gene in 53 human
tissues shown as box-plots with women samples in red and men samples
in blue. Pink and light blue are women and men reproductive tissues,
respectively. (PDF 41 kb)

Additional file 20: Figure S12. SDE score heatmap of non-protein-
coding genes. Red and blue denote women or men specificity, respect-
ively. (PDF 221 kb)
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